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ABSTRACT

The general purpose of the work reported here is to obtain the best
possible feasible signal processing algorithms for estimating from radar
data characteristics and trajectory parameters of bodies moving in the
air.

By analyzing the characteristics of a family of projectiles, a set
of approximate simplified dynamics equations is obtained (Section 2)
that can be used for extrapolation and backtracking with radar determin-
able parameters. The formulation includes terms which account for both
drag and drift. Tentative numerical results indicate small resultant
backtracking errors due to drift but somewhat larger errors due to drag,
especially when the projectile's velocity passes thru mach 1 during the
observation period.

In Section 3, formulation is developed which can be programmed to
determine the effects of random radar errors on trajectory estimation
and backtracking accuracy.

Section 4 presents the formulation necessary for constructing an
extended Kalman filter and smoother algorithm for extracting pertinent
state vectors and trajectory parameters from radar data. Specific in-
puts required and relationships are given in form suitable for programm-
ing.

Six appendices are included, giving some of the mathematical de-
tails, describing modifications and other experience with the modified
point-mass dynamics program, and a glossary of the main symbols used.
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L 0o. INTRODUCTION.'

I, As indicated in the previous Quarterly Progress Report, this work is con-
cerned Nith the geperal sf.gnal processing problem of estimating characteristics
and trajectory parameters of a body moving in the air from noisy radar observa-
t.ions.

The main thrust during this, lat quarter has been the adaptation of a BRLprzogram -supplied to' us by USAECOM: to provide trajectory data for a suitable

'family of ballistic projectiles, to calculate simulated radar coordinate data
that can result from different geometrical configurations, and to form the
basis of "simiplifid'd dynamics" equations to be" used in filter -smoothing algorithm

design and for backtracking simulation and evaluation. I

Additional results have been obtained concerned with evaluation of irreduc-
ible estimation errors duý to radar measurement errors and the development of

* the necessary formulation for the optimal smootiing, filtering, and backtracking
algorithms for the estimation of necessary trajectory parameters.I ,
1.1 Summary, main results.e

Section 2.0 to follow 'describes the development of simpl~fied-dynamics equa-
tions, thdt are buitable for approximate trajectory calculations in terms of
measurable parameters. Starting with the BRL modified point-mass equations and a
reprepentative set of projectile characteristics,, simplified expressions for drag
force and for drift for'ce were evolved. For drag a universal, coefficient curve
was calculated that together with a projectile variable scale parameter that must
be estimated enabled the approximate drag. forceto be calculated. For drift, a
normalized parameter differential equation with a universal curve coefficient
was postilated requiring an initial value estimation from thL data. Magnus force
was "assumed negligible. In Section 2, the n•ecessary formulation is developed and
a let of tests are described which indicate the effe'tiveness of the simplified-
dynamics 'equations in backtracking aiong the trajectory to the launch point. It
is shown that drift force errors are effeqtively accounted for but drag forces
sti.ll lead to errors that rre: perhaps larger than desirable. Associated with
this section are Appendix A, giving the BRL Modified point mass equations, Appen-
dix B showing %he Universal Aerodynamhic Functions evolved for drag and drift

.• force effects and Appendix C commenting on the computational aspects oi the work.

Section 3.0 presents the formulation inecessary to determine theoretical
limitations on accuracy of trajectory parameter estimates (launch-point state
and aerodynamic parameters) due to random rad.tr noise errors. Associated with
thid se'ction is Appendix D which gives the formulation required for transforma-
tions between radar-centered ard gun-centered coordinate systems. Formulation
to accoudt for radar bias errors will be presented in a subsequent report.

Section 4.0 presents the general filter-smoother algorithm developed to
estimate trajectory parameters from the noisy radar data. 'ollowing the ex-
tended Kalman filter technique an augmented time-varying st&te-vector is

h I
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defined having eight components consisting of target position ana velocity vector
components as w2ll as drag and drift parameters. The formulation is set up for
calculating optimel estima-zes of present value (filter) and initial value
(smoother) of the augmented state vector updated on a quasi-real time basis.
Initial work assumes availability of radar data for off-line processing but once
algorithms are efficientl.y programmed, the feasibility of true real-time pro-
cessing will be assessed. Provision is made for use of simulation as well as
analytical techniques for performance and feasibility evaluation of the algorithms
developed. Results are presented in a form convenient for programming. Specific
definition of matrix elements required is given in Appendix E. A detailed theore-
tical development will be presented in the next quarterly report.

Conclusions and plans are described in Section 5.
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2. 0 SIMPLIFIED-DYNAMICS EQUATIONS.

BRL (B'llistics Research Laboratory) Report No. 1314.., Reference 'i3, pre-
sents the modified point-mass equations used in computing firing tables. These
equations are described briefly in Appendix A.

In order to compute backward in time from the observed projectile positions
to the launch point, some equations governing the projectile motion must be used.
If the projectile type and its ar'rodynamic characteristics were known, the modi-
fied point-mass equations could be used for computing backward along the trajec-
tory. Under the conditions of interest in the present study, nothing is known
about the projectile except what is deduced from its observed behavior. It is
assumed in the present study that the accuracy and reproducibility requirements
on artillery fire must result in generally similar aerodynamic characteristics
2or all artillery shells, so that the 105nm, 155mm, 175mm, and 8 inch projec-
tiles -- called for brevity the standard projectiles -- have characteristics
generally similar to any effective artillery shell. In particular it is assumed
that the standard projectiles can be imbedded, in a sense made specific below in
connection with equations (5) and (12), in the family of all projectiles, the
different members of the family differing from one another only in numerical
values of certain parameters.

Casual examination of the point-mass equations in Appendix A shows that the
trajectory is affected by three aerodynamic forces, causing drag, drift, and the
Magnus effect, in addition to gravity and the Coriolis "force". Among them they
involve seven functions of Mach number and at least five constants, that can vary
from projectile to projectile. To determine all these functions and constants
from observation of the behavior of an unknown projectile would require accura-
cies in and durations of radar observations far. in excess of what is achievable.
The present study assumes that it will be enough to estimate, from the observed
projectile behavior, the principal (zero-yaw) component of the drag acceleration
and the drift acceleration. The conditions under which this assumption is valid
are discussed in 2.4 below. In all previous work of which the writers are aware,
only the zero-yaw drag acceleration has been estimated.

2.1 Drag acceleration. The direction of the drag force is in the direction
opposite to that of the instantaneous velocity. Its magnitude is, for the four
standard projectiles,

(P/C i)Y% (Miv2 _ i= 1, 2,.3,4' (6)

In equation (1) K•i(M) is a function of Mach number characteristic of the pro-
jectile, p is the density r%? the air mass, and v is the projectile air speed.
The ballistic coefficient C is an empirical constant approximately equal to

ratio m/d2 but generally also a function of firing charge.* Examination of the
four %i(M) functions, which are illustrated in Appendix B (actually the ratios

KIi/Ci are plotted for nominal values of Ci), shows that the functions are

BRL data for the standard projectiles indicate that for the 155mm, 175mm, and
8 inch shells Ci is a function of chargej C J is also a function of quadrant

elevation for the 155mm projectile.
-3-



approximately proportional, i.e. t& ratio of any "'o functions, or drag curves,
is a constant nearly independent of Mach number. It is this characteristic of
the functions KD, that has simplified the problem of estimating the drag effects
for an unknown projectile. It permits the selection of a function Kn(M), .which

will be devoted as the universal drag function, that is independent of projec-
tile. The Universal curve has the property that the ratio

S(KD(M)/Ci)/FVM) i = 1,2,314. (2)

is nearly constant with Mach number, and can therefore be approximated by a
constant

c. (3)
c=(I%i(M)/c.)/Y~M).(3

Substituting equation 3 into equation (1), we have that the drag acceleration
for the standard projectiles is approximately

P c ±K D(M)v (41.

The assumption mentioned above that the four standard missiles can be imbedded

in the family of all projectiles means, with respect to zero-yaw drag accelera-
tion, that for !M projectile the drag acceleration will be representable by

cD(M)2 0~)

where the value of c is to be estimated from the observed projectile motion.
The function Y(M) is selected as described in 2.3 below.

2.2 Drift acceleration. It can be seen from Appendix A that the vector accel-
eration due to drift is

xI X 34) (6)

thfor the i standard projectile, with K (M) a ftnction of Mach number, N the
spin angular velocity, v the vector of projectile velocity relative to the
ground. As indicated in the appendix, the coefficient a, is a function of

-4-



several physical parameters characteristic of the projecti?.e and the s0 called
"lift factor" ., a scale factor function of the firing charge.

The spin angular velocity is governed by the expression

-b= -bipK,(M)v N (7)

where b. is again a projectile characteristic constant and Ki(M) another func-

tion of Mach number. Evaluation of the constants bi in (7), using data not

shown in Reference [1] but given in BRL data associated with the computer pro-
grams for the modified point-mass computations, shows that the values for the
four standard projectiles are 0.0255. 0.0193, O.0166, and 0.0157 Vt'/pound.
Similar evaluation of the functions KMi(M) shows that the same function is given
by BRL for three of the four projectiles; its value is 0.007 (dimsnsionless) at
M = 0 and it falls smoothly to about half the value at M = 2.5. For the 8-inch
projectile, the value is given as 0.005, constant with Mach number.

Clearly the situation is less favorable for (7) than for the drag accelera-
tion, with regard to embedding the four standard projectiles in some general
functional form with small relative errors of approximation. Fortunately the
drift effects are smaller than the drag effects to start with, and larger rela-
tive errors are tolerable. In the simplified-dynamics equations it is assumed
that

. = -0.020PRA(M)vN (8)

is a tolerable universal approximation to (7), with KA(M) taken as the function

KAi(M) for the 105mm, 155m., and 175mm projectiles.

The expression (6) may be written

-(a. /c)(cKi(M)N/V2  x j( ) i = 1,2,3,14 (9)

where, as explained in 2.3 below, a function K(M) and four constants c. are used
(these c. 's are unrelated to the c 's of (3) and (4); they merely serve an ana-

l2 "3"

-5



logous purpose) such that for eachi -J 1,2,3,:, iK(M) approximates c.•.K (M as

closely as possible. Again, the relative accuracy will be poor by comarison
with the relative accuracies achieved for the drag approximations, but as ill
be seen in 2.4 below the use of the drift terms in the siraplified-dynmiocs equa-
tions gives results considerably better than does igaoring the drift.

The drift acceleration can now be taken as

2.• .(ajc.(M)(N/Iv) x i = ',2.3,14 (10)

where ai/c. ib a single parameter and K(M) a universal function, and where N is
given by (t). As in the passage from (4) to (5), we could imbed the values of
the param.ter

r i = a1 ( /C

in a family of parameter values, and for the case of an unknown projectile esti-
mate the value of r from observed drift acceleration effects assumed to be
governed by an expression

(.•M) (Nlv )h U X) OP)

together with (8), in which only r needs to be estimated. However, although
(8) through (12) are useful for exhibiting the underlying reasoning, it is
more convenient in the computations to define a new variable s(t) to be estimat-
ed, as part of the state vector, than to estimate the parameter r.

Let

s(t) rN(t) =aN(t)/c (13)

by definition. Then (8) becomes

s = -o.o7KA(M)vs (14)

-6-



and the drift acceleration (12) becomes

-(s/V)A(M)(- x i.) (15)

Equation (14) and expression (15) in the simplified-dynamics equations replace
(7) and (6) of the modified point-mass equations.

2.3 Choice of universal functions. In passing from.(9) to (10), it is necessary
to find a function K(M) and four constants c.: i = 1,2,3,4, so that each of four
given functions Ki(M) is approximated by cAK(M). Below is described the basis
for choosing the universal function K(M) and the four constants ci. The same
problem occurs in passing from (3) to (4), with C.i%(M) given instead of Ki(M),
i = 1,2,3,4.

One way to achieve the desired result is to minimize

Mb
s = i w wi(M)(cik(M) - K. (M)3) d (16)

1Ma1

where (Ma.Mb) is the range of interest of M and w.(M) is any set of weighting
functions that permit assigning importance to certain i, to certain subranges
of M, or both. In what follows, all integrals are over (MaMb) and all sums
are over i.

For a given set (ci,...,c4 ), the K(M) that minimizes (16) must satisfy

s(C(m) + 6j(M))= s(R(M)) (17)

for an arbitrary small variation 6K(M), by the reasoning basic to the calculus
of variations. To first-order effects, (17) implies

•Kwi(M)(ci6k(M))(ci (M) - Ki(M)) dM = 0 (1)

which can hold for arbitrary small 6K(M) only if

"-7-



Eciwi(M)(cif(M) - K.(M))= 0 (.19)

or

-IR(M) =Ec.w. (I)K. (M/tcOW.(M) (20)

Or if I(M) is fixed, the c's that minimize must satisfy ýS/ri = 0,
i = 1,2,3,4, or

2jw.(M)i(M)(ciK(M) - K.(M))dM = 0 i 1,2,3,314 (21)

from which

*- ,fwi(M)k(M)Ki(M)d/j'wi(M)(R(M)) ad i = 1,23,34 (22)

By applying (20) and (22) alternately, since each application reduces S,
* one can find a succession of c.'s and functions K(M) until successive changes

in S are as small as desired. However there is no unique solution to the problem
as stated above because for any heal k/0, multiplication of each c by k and
division of K(MS by k leaves S unchanged. It is convenient to make the solution
unique. This is done by using the following computation procedure:

(a) Take an arbitrary f(M) to begin with -- for example KI(M).

(b) Use (22), with f(M) in place of K(M), to compute a set of c's.

(c) Normalize the c's by dividing eanh by their mean, so that the normalized c's
will satisfy Ec =4.

(d) Using the normalized c's, Ise (20) to compute K(M).

(e) Use (22), and normalize as in (c), to compute a new set of c's.

(f) Repeat (d) and (e) until the changes in an iteration are satisfactorily small.



The above procedure was usedwith the 1= for all M and i in order to
determine the universal drag function K(M) and the corresponding four constants

ci. The nominal ballistic coefficients for the 155mm, 175mm, and 8 inch projec-

tiles and the correct single value for the 105mm projectile given in Appendix B
were assumed for the computation. It shoulad be noted that the above choice of
weighting functions although an obvious one, is quite arbitrary. Other choices
could have been made, possibly in order to shape the universal curve to minimize
drag computation errors in the transonic region for specific expected target pro-
jectiles.

Only one cycle of the procedure was used for determining the universal drift
function K(M) and the associated constants ri. Justified by our assumptiw. that
large relative inaccuracies are acceptable in drift, w (M) was taken to be the

Dirac delta function 6(M-Mo) with M° = 0.8 for all i. As was previously indicated,

the computations were scaled by the nominal lift coefficients of Appendix B.

2.4 Test of the simplified-dynamics equations. One limiting factor in the per-
formance of the system studied by Project RATRAN is the amoung of error incurred
in using the simplified-dynamics equations for the backward integration along
the trajectory. To measure the amount of this error, it is intended to use the
modified point-mass equations to compute a trajectory up to some point (x,y,z,t),
and then to use the simplified-dynamics equations for computing backward, as
these equations will be used in practice for computing the estimated launch
point. The difference in x and z coordinates between the point on the backward
trajectory at which y = 0 and the starting point for the forward trajectory com-
putation is the error due to the use of the simplified-dynamics equations, plus
numerical errors in computation; the effects of the latter are estimated by an
auxiliary computation in which the modified point-mass equations are used in the
backward computation as well as in the forward computation.

In the backward computation, the correct parameter value ci is used in the

drag computations and the correct starting value is used for s(t), the drift
variable. In both cases the constants were properly scaled to account for the
differences between the nominal drag and lift cot. 1fficients of Appendix B and
true values for the particular projectile cases considered. There will be errors,
in practice, in the estimates of ci and s(t), but these errors are not chargeable
to use of the simplified dynamics equations.

The forward-backward computation test on the simplified-dynamics equations
has been performed for several trajectories; results are shown in Table 1. Char-
acteristics of the test trajectories used are shown in Figure 1.

"-9-
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The table summarizes the results of three kinds of computations. in all
three, the BRL modified point-mass program was ased to compute trajectories to
some preselected time, the "time at reversal". From the state parameters at
the time of reversal, three backtracking computatiors were made, proceeding
backward in time to zero elevation. The three differ as follows. In the case I
of most interest, the backwDard computation used the simplified dynamics equa-
tions; the results are given in the columns headed "simplified dynamics includ-
ing drag and drift". Magnus effects were not included in the backward computa-
'tions. In order to show what would happen if no drift effects are included,
drift force was set equal to zero in another set of backward computations,
reported under "simplified dynamics including drag only". Finally, to estimateerrors due to numerical round-off, a third set was made using the complete BRL

equations; the results are shown under "BRL equations".

The tables show that, for the trajectories tried, (a) the effects of com-
putational errors are negligible, (b) drift is the principal source of error if
only drag effects are included in the backward computations, and (c) drift error
effects can be reduced to amounts small by comparison with drag error effects,
insofar as errors in the simplified-dynamics equations are concerned. (Whether
the filter can estimate the drift-variable well enough to take advantage of the
situation remains to be seen),

For the trajectories so far tested, the errors due to the use of the simpli-

fied dynamics equations are below 25 meters in estimated launch point for all
trajectories in which the radar observations can be made within 20 second of
firing.

-12-



3.0 IRREDUCIBLE LAUNCH-POINT ESTIMATION ERRORS DUE TO RANDOM RADAR ERRORS.

3.1 Purpose. On the assuaiption that the simplified-dynamics equations represent
the true behavior of the projectile, this section describes how to compute the co-
variance matrix of the error in launch-point estimation for least squares estima-
tors. The simplified-dynamics equations are defined, and the errors incurred in
their use discussed, in section 2. For the purposes of this sevtion, it is enough
to say that they involve a drag variable and a drift parameter to be estimated.

It is assumed here that the only source of error is the random radar errors.
Bias radar errors will be investigated separately. The errors in launch-point
estimation here studied will depend only on the covariance matrix of the radar
errors, the trajectory-radar geometry, and the schedule of radar observations.
They are sampling errors, in the sense that if enough independent radar observa-
tions could be made, the errors in launch-point estimation due to the radar
errors could be made as small as desired.

This section, then, tells how to compute the performance of the best possible
(least-squares) signal-processing algorithms in coping with random radar errors,
in deducing what needs to be known about the projectile and its trajectory. Later,
when the performance of individual algorithms (e.g., Kalman filters) is investi-
gated, the results of the computations described below will provide limits on the
performance of the algorithms. The limits could be reached if the covariance
matrix of the radar errors is known and if enough radar observations could be made
and if computation time and computer memory were not limited. Comparison between
the limiting performance here considered and actual algorithm performance will be
used in guiding decisions on whether to accept performance of a particular algorithm
or to seek improvement at the cost of computer capacity.

3.2 Outline if method. The following is well-known: If there are N observed
column-vectorm3 (radar observations)

k =-- + k '1..,

where Ek is a true value and each 6 r is a zero-mean normally-distributed error

vector independent of the others,, and if there is to be estimated a vector v
(augmented initial state vector) that satisfies

S=- 3k 1...,N

"-13-
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for Tie matice eAti tofor given matrices A, then the maximum-likelihood estimator for v is

Ss A P_-. (25)
-k

where the superscripts I and T denote respectively the inverse and -zranspose
operations,

I I

~k, k

and R(

k= (27)!

S I

is the covariance matrix for the errors in Ek"

Under the assumption that the errors brk, and the errors '6 that tiey cause
in •, are small, the RATRANI launch point estimation problem can be identified
with the linear problem just described as follows. The vector v has eight com-
ponents: the coordinates in gun-axes xo, yo, and z = 0 and thi velocity com-

ponents X' and io at the time to of launch; a constant parameter c character-

istic of the projectile; and a drift parameter C, the initial value of1 a variable
used in the simplified-dynamics equations for drift computations. For notational
convenience these eight numbers are denoted also by vl,...,v 8 respectively.' The

vector rk of radar observations at time thas either three or four components,
tk Asehetheorfucopnn,

depending on whether doppler is not or is used, the other three being' the range
and two angles. (Four different radar types will be considered: range-d-p and,
range-azimuth-elevation, each with and without doppler.) Then

())

Ak= (ajk)) (28).

where

a. (k) = 6ri (k)/6v.,

-14- *
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the. change in thej ith radar coordinate at time; t due to small.uqit change in tne
• jth component of the initial augmented state vector v.

i Equation (95 )" implies that

I I

E,[6 6^TI s, (30)

is the covariance matrix for the erx, or

6^ v (31)

i :Ii .

in the maximum-likelihood estimator .s By the' assumptions of normality and
linearity,_V is alqo the leagi-squares estimator.

I Sihce the pur•pose of RATRAa is not to estimate v at a particular value t 0
of time, with respect to the radar' observation times., but rather'at a particular
value z = 0 of projectile altitude -- and in general the 'two conditions will not
concur -- v is adjusted by

x x -z kc/i
L o0 0 00

* ~(32)K . (t•

YL Yo z"o -oIo

or

xL
I - L• (33)

\YL)

with I

,i .5o/•o ,o0 0 . 0

L':., (34)(1 00 ' 0)

* !

I '



Because the adjustment (32), is small, the true value of L may be used, and fo?
convenience will be, used, in the computations here described, in place of the
estimated value that would have to be used in the actual radar system.

The covariance matrix for the error launch-point estimate, using least-
squares estimation,, is therefore

E6xL E xL y6

LL
P E E6(L 2 / L- TT S T LT

X&6L )L YELL )L

The computation of P is tCe subject of the remainder of this section.

3.3 Inputs to the computations. Each computation of P is for the following in-
puts: A projectile trajectory, requiring specification of the projectile and its
initial velocity vector; the position of the gun and its direction of fire rela-
tive to the radar; the choices with regard to the radar -- namely the use of
doppler, the choice of angular coordinates, the radar altitude, and (only if range-
a-' is used) the antenna array tilt angle; the covariance matrices Rk for the
ran,.om radar errors; and the set of observation times tk'

The projectile trajectories will be computed using the BRL modified point-
mass computer program as adapted for the simplified-dynamics equations. The drag
parameter v7 = c and the initial value v8 = CO of the drift variable must be

specified. The gun coordinates z , x relative to the radar (y is vwrtical and x
g g

forward, as explained in Appendix D), and the azimuth firing angle A2 in the
rectilinear radar-axes system must be given; these numbers are specified as though
the earth were flat, but the trajectory and the radar coordinates are computed for
a spherical earth. The covariance matrices Rk will be specified either as constant
or as a function of radar coordinates, never as time functions as might have been
inferred from the definition relative to the observation times tk' The computer
program will provide for the possibility that the elements Rk are to be computed
from the radar coordinates at the time tk. The matrices R will be 4-by-4, ifjk* k
doppler is used; if doppler is not used, the computations are simplified as dis-
cussed in 3.5.3 below. The choice of observation times t that the program will
be able to accomodate is discussed in 3.5.1. k

3.4 Values for radar error covariances. Inputs to this analysis program re-
presenting the variances of the random radar estimation errors can be described
as follows. Logical system operation will consist of a sequence of independent
"looks" at each target, each look consisting of a burst of radar pulses during

which range, two angles, and range rate may be estimated. Aside from bias errors,
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which will be handled separately in this study, the different measurement errors
can be considered to be independent random variables with zero mean values being
effectively independent also from look to look. The following formulas will be
applicable to this end (see for example Skolnik L2 ], Chapter 10).

2 c 2 22 2'. Range error variance (36)

c8 -VA( 2 (2E/No) + R nleerrvrine(7

2 2 2

2• = + aC RAngl ae error variance (38)
4y• (2E/No) C

a 0 + R 2Angelae error variance (38)

In the above expressions, 2E/N is effectively signal-to-noise ratio deter-

mined by transmitted power, antenna gain and target range and cross section; 8 is

the wavelength of the transmitted signal; C is the velocity of light; y is the
effective bandwidth of the transmitted signal; "'•A is the effective aperture
dimension of the radar antenna; YT is the effective duration of the coherent

signal used for doppler estimation; a_2 , 2 C.2 are the non-range-dependent

o C C
components of measurement error variances, due to (unavoidable) system imperfec-
tions.

A convenient simplification is to make a preliminary set of calculations
with a nominal system at a nominal range R , then make use of the fact that
2E/N varies inversely as range to the fourth power so that

0

2EI = (2E/N )o (R/l1)4  (39)

Then equations (36), (37), and (38) simplify as follows:

1-17



aR a (40)

a 2  2 )4 2
a C •"2(R/R 0) + C (41)

0 C

• a= aR(R/Rl + . (42)
0 0RC (2

where aR 2 a and ao are variances of errors due to thermal noise, calculated at
0 0 O

the nominal range Ro.

TThe above quantities are then used as the main-diagonal elements of the
matrix Rk referred to in sectioL 3.3 above; all off-diagonal elements being
zero.

3.5 Details of the computations. Let k be arbitrary but fixed, so that it neednot be exhibited in the notation. Then (28) and (29) may be expressed, using nota-
t: on common in control theory, by

AT= &r/•v. (43)

Let u = = u(tk) be the vector whose elements are the values at time tk of the
projectile coordinates Xk, Yk' Zk and their time-derivatives in the gun-axessystem.

k= (xkYýrkzk :ýk k~k (44)

Clearly u is determined by v, for given tk, and r is determined by u, and so

ýL rTl6= (uT/ov_)(ý18/du) (45)
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or A =CB where

B= uI/av, CT IT (46)

in the notation of (43).

The- 6-by-8 matrix B is independent of the type or location of the radar, ex-
pressing only the relation between the initial augmented state vector of the pro-
Jectile and a later state vector. The elements of B will be computed and stored.
The computation of the elements bij of B require nine executions of the program
for computing trajectories. One of the nine is called the reference trajectory.
The reference trajectory begins with the nominal initial conditions. in each of
the other eight, one of the eight components Vl,...,v 8 of the initial augmented

state vector is perturbed

v. v + 6v j 11,...,Y8 (47)

For each k, the values of

bij = bij (tk) i , 6

are given by

bij = (1/6v )(perturbed uI - reference ul) (48)

with the right-hand side evaluated at time t . Tht perturbations 6 v i are input

constants, to be determined by preliminary trials not defined here in detail,
their purpose being to determine values 6v. for which the differences between

perturbed and unperturbed u-values are above the round-off error noise level,
tut are small enough for (48) tc approximate a partial derivative. Forty-
%ýight b's will be computed and stored for each k.
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In adldition to the 48 matrix elements b.., there will also be stored the six
vector elements u(tk) of (44), as computed fo the reference trajectory, for use

in computing the elements

(k)c (tk), k = 1,...,N (49)

of Ck, as explained below. Each trajectory thus requires storing 54N numbers.

The matrices Ck will not be stored between runs. They will be computed as

needed, from input constants and the values of the vectors u(tk) = •. The

first step in the computation of each Ck is the computation of the projectile
position vector

rk k

I J
"rk/ \(t)

in a right-handed rectilinear coordinate system with origin at the radar. In (50),
the radar coordinate system has the y-axis along the vertical at the radar, posi-
tive upward, and the x-axis along the nominal forward (zero-azimuth) radar direc-
tion. The values of x(tk), Y(tk) and z(tk), three of the six elements of the

previously-stored vector k', are the components of the projectile position vector

in the right-handed rectilinear system that the trajectory computations use. This
system has its origin at the gun and its y-axis positive upward along the local
vertical, and its xy-plane contains the initial-veaocity vector. M is the 3-by-3
matrix of the rotation needed to make the gun and radar axes parallel, and d is the
position vector of the gun in the rectilinear radar axes system. M and d are com-
puted in terms of input constants as follows:

M = (mij), iJj 1,2,3 (51)

dT = (dI d2 d3) (52)

2 2 1/2
gS (z + x (53)

.•*See Appendix D for a simplified discussion of the coordinate conversion used.



C3 = (51f)

S3 = -zg(55)

Ci = (S3) sinA2 + (03) cosA2 (56)

Si = -(S3) cosA2+ (03I) sin.A2 (57)

S4i = g/R,, (58)

where R is the radi~us of the earth.

c4i = 1 - (1/2)(S4)2  (59)

tm  = (cl)(c3)(C4) - (Si)(S3) (6o)

m. (03)(S4I) (61)

mJ3=-(Sl)(C3)(Cli) -(cl)(s3) (62)

m =(Ci)(S4i) (63)

m2= c4 (64i)

m,~ = - (si)(s4i) (65)

m = (cl)(S3)(c4i) +(Si)(C3) (66)

'32 =- (S3)(S4i) (67)

'33 =- (sa.)(s3)(C14) +(ci)(c3) (68)

d =X (69)
1
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d2 -g('s)/2 -h (70)

S= z (71)

In (71), hr is the altitude of the radar (in excess of the altitude of the gun).

The matrix M, with components given by (60> through (68), is also used to
compute

I • rk 
/ tk •

(Zrk (tk)/

The vectors wk and are used to compute the radar range at time tk

Ek k T~/

the direction cosines

= Xrk/rk (74)

c6 y Yr/r (75)

C7 Zk/rk , (76)

the range rate

k (C)rk + (C6)r + (C7)'rk (77)

and the ratios



C8 = k A/jk (78)

c9 = krk/rk (79)

Cl010 rk/rk (80)

By definition (see figs. 1 and 2)

S= arc cos[(C5)cosy + (C6)siny} (81a)

where Y is the antenna array tilt angle.

p = arc cos(c7) (82a)

The purpose of (50)through (82a)is the computation of cij (tk), i = I,..,;
J = 1,...,6; k = 1,..v,N, where cij is the partial derivative of the ith radar co-

ordinate with respect to the Jth component of u(tk) as defined by (44). If the

first element of r is taken to be the range r and the fourth to be the range rate
ý, in both the range-a-p case and the range-azimuth-elevation case, then the first
and fourth rows of C will be the same in the two cases. They are given by

c11 = C (83)

c = c6 (84)

C03 07 (85)

C14 = C01 = C06 = 0 (86)

41 = 02 = C3 = 0 (87)

C4 = c8 (88)

c45 = c9 (89)
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Co6 = do (90)

in the range-a-p case,

T : rk % k •k" (91a)

Equations (81a) and (82a) give a and p. Performing the partial differentiations
with respect to the u. 's gives

C21 = (-((C6) + (C7))cosy + (C50)(06)siny)]/ENO (2a)

2 2
f= (c5)(c6)cosy - ((05) + (C7) )siny]/DENOM (93a)

023 = (C7)((C5)cosy + (C6)siny)/MoNOM (94a)

C24 = 02 5• C2 6 o (95)

where

NoM f(XrkSlY -YrkCO5Y )a+ r2 21 1i/2 (9)
DENO ((crkaay ,,kcsy) rk

C31 = (C5)(C7)/RHO (97a)

S032 = (c6) (C7)/RHO (98a)

C33 = -1/RHO (99a)

C3 4 = 035 =036=0 (x00)

where

= o21/2)

RHrk + rk 2
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in the range-azimuth-elevation case,

= (rEk AZk EIk rk) (9!b)

where

AZk = arc tan (Zrk/Xrk) (81b)

EIk = arc sin (Y8/rk) (82b)

Performing the partial differentiations gives

,, 2 2 2bC21 = -z ,rkx +Z (92b

022=0 o(93b)

o X /(x 2~ 2 (941,
23 rk rk k

084 =0,25 026= (9)

C 31 -Xrk Yrk/rk (97b)

032 = !/rk (96b)

03 =~ ZYk/rk/kxrk Z 'k2 (99b)

034 = 35 = 36=0 (i00)

3.5.1 The observation times t k* As has been said, there will be first computed

and stored 43 elements of B and six of ' for time t, t,...,tn. The matrix
k' k-' tn*

n
T IS = S~~~~ (26)

is approximated, for evenly-spaced

tk = 1 + (k-!)¶, (102)
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by

t-

i 1 A!2 + (1/'r) A n I A dt +A R-An/2, (103

where the integral has been equated to its trapezoidal-sum approximation. Equa-
tion (103) shows that the number n of the observations need nct be carefully
selected, because for given end-points tI and tn, (103) can be used over a range
of intermediate spacings T, as long as they are small enough to warrant the
integral-sum •pproximatA.on. Since there is no reason to expect rapid changes in
the product A*(t)RI(t)A(1), it seems safe to take the values of tk perhaps 1/2
second apart, for the purpose of storing the elements of Bk and 3,k and to use
the stored values for computing the integral in(103), after which(103) may be
used with arbitrary T to compute S for other observation rates, by means of

I (/R, A1/s( + A- RI An/2

n n a

where T is the spacing of interest and Tr is the spacing used in the stored values,

so that S(Tc0) is given by(26). Of course the end-points t 1 and tn must be the same
for the two spacings T and T.o

The values of tI and t will be selected after some preliminary investigation,
1 n

for each trajectory, on the earliest time the projectile will be visible to the
radar and the latest time for which the accumulated errors in the simplified-
dynamics equations are of tolerable magnitudes.

3.5.2 Inversion of the matrix S. From (34) and (35) it is clear that only the
first three rows and columns of SI are of interest. If the 8-by-8 matrix S is
partitioned

s s (105)

2T S3
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where SI is 3-by-3, S2 is 3-by-5, and S3 is 5-by-5, its inverse has in its upper-

left-hand oorner the matrix

' - I sTI
S- =s- s2 8 3 S " (lo6)

The computation of (i6) requires a 5-by-5 inversion and a 3-by-3 inversion, in
place of an 8-by-8 inversion for the entire matrix S. The use of (106) is pre-
ferable. Then

P = L S, (107)

replaces (35), with

-: "o/ko 0
L = (i108

3.5.3 Effect of not using doppler. If doppler is not used, the computations are
considerably simplified. The matrices have the following dimensions:

With doppisr Without doppler

Matrix rows columns rows columns

s, s1 8 8 8 8

A 4 8 3 8

R, R 4 4 3 3

B 6 8 3 8

C 4 6 3 3

In particular, only the first three rows of B need be computed and stored,
if it is known that doppler will not be used. It is intended to use the full
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system, as described above for the case in which doppler is used, at least ;for the
first few trajectories studied, to assess roughly thd value of using doppler. If
doppler is found not to be of great value, it is intended to omit it from most of
the computations for economy, and perhaps later to restore it for studying its
effects on the best filters found. if doppler is omitted, so are equations (77),
(•781, (79), (80), (87Y, (88), ("9 Y, anid (90), and i 4j5,6 in (4l)-

3.5.4 Summary of the computations. The sequence of computations is as fo'lows.

First, preliminary investigation's are needed to establish the values of Ov ,
j = I,...,8, in (48) and of t 1 ,...,t, for each trajectory.

The values of u, (44), are computed for the reference trajectory and the

matrices N., defined in (46) and computed by (48)', are determined and stored.

The matrix M and the vector d are computed, by (51) througý (71)., for the
gun-radar geometry. M and d are used in (72) through. (80), together with the
stored values of _Uk, o determine the projectile state-vector in a rectilinear,J
radar-centered coordinate system.

Then (81) through (100) with the a-version of.equations (81), (82), (91)'
(92)., (93)'J (96)j (97)., and (98),, give the matrices Ck for the range-a-A radar'
coordinate system. The same equations, using the b-version, gives the matrices

Ck for the range-azimuth-elevation coordinate system. In both cases, Ak=CkBk
gives the matrics A k needed in (26).

Then for the spacing T = t - t of radar observations, (?6) gives the0 k+l kmatrix S; (104) is used for any other evenly-spaced radar observations. Finall4"
(105) through (108) give the covariance matrix P of the least squares launch-
point estimator.

-28I
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4.d 'FI.TER'-SMOOT1MR DESIGN ,

*4.1 Introduction. This section will be devoted to a discussion of the non-
* linear filtering/smoothing algorithm for estimatifig instantaneous state vari-

ables that will be implemented by the University in the next quarter. The
first subsection contain. a short mathematical description of the algorithms
to be employed. The second will desdribe ihe -basic problem formulation. This
will include a discussion of the equations of motion, state variables, and co-
variancd matrices. ,Finally the third subsection will describe implementation
concepts and future plans.

4.2 Estimation Equations. The nonlinear Ailter/sDioother specifies estimates
of a given past state and the current n-di mensional state of a dynamical
system obserýved discretely in the presence of additive GaussiLn white noise.
The system is assimed to be described by the stochastic vector differential
equation

. dxt f(xt,t)dt + gý(xt,t)dgt (109)
tI

wherep t represents a, Brownian motion process with covariance matrix

Etdt,dJ = 9.t dt(llO)

I a

iThe corrupted m-dimensional ( m • n) measurement vectogr z1 is related to the
sthte by'the expression

+IaI

zz=h(x) +v• il

where

x X=t, 't t (1)2)
A

and +t'

Etvl. " I 2 
6A .k" (113)

a !
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An a priori estimate of the state x with covariance cov(xox ) is also assumed
given. 0

The algorithm is composed of a set of discretized extrapolation equations
and a set of estimate update equations. The extrapolation equations describe
the behavior of the current state estimate A and the associated covariance
matrices between observation samples. The update equations determine improved
estimates of -,he current state and the prescribed previous state Xk(k < A).
These estimates and modifications to the covariance matrices reflect the new
information available in z V

We shall denote the best estimate of state xk based on a realization of
measurements ZA =zl,#...,zL) as The conditional covariance will be,de-

noted by cov(xkXktz).. -.

The extrapolation equations for

t£ t•. + At

are given as follows

At2
x~ +A~ t f(~ 1  1 t 1 +7F 1 ( 1 2 ,t 1  (114)

Aoe ,x ez•.) 11-- 1- cov(,1-lsxA-llzA-l)•,zl,-+g•l••t-)-

cov(xk,xIZZl) cov(x,xk .Iz 2.1  ),A.1 (116)

is the nXm Jacobian matrix of the f(- , t) vector function with

elements

a x 1-111-1 (117)



111= I + At Fj1 1ý (nB)

= At Q(t ) (-9)

where I is the nXn identity matrix.

Defining the gain term

sA= H (H. cov(x,,xlz2. H)H + R2 ) (120)

Sh.(x)LHJi,j =•.~.. Ij x - A,- (2l:),

X =12-1'

We have for the update equations

X-e = 1z-1 + cov(x 2,xIz Jl_)Se(; - h( 1  _-)) (l )

xkl.'k 1 .9.-l + cov(xk',X Iz 2 l)SJ(zA - h(B l' ))-l (123)

cOv(x 2 ,x•JZA) = cov(x,,xIZ,_l)(I - SA H, cov(xA,x 2IZA_ 1 )) (124)

cov(x,x 2IZ2) = cov()(,xIIz 2 _9(1 - Se HI cov(x 2,x•jz 2_)) (125)

Art expression for updating the approximate covariance
for the smoothed estimate also exists. The expression is however, not required
for implementing equation 123. Its utility is restricted to that of evaluating
the quality of the estimate. Since algorithm evaluation will be an important
part of the project, we include the equation
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cov(xk,xklz) = cov(xx!zzl) - cov(xkx(Iz.)s• HL covT(x,,xz•.). (36)

The algorithm is initiated by the given a priori information

•' xolo = xo

and

cov(xoXoIZo) = ccv(xoxo) (128)

i4.3 Equations of Motion. We assume ;he radar to be located at an altitude ho and

at laditude g on a rotating spherical earth as illustrated in Figure 2. A moving

Ok x - North

YS

yg - Local vertical

z - East

Fig 2 Radar Location
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Cartesian coordinate system x J,y ,z g will be defined centered at this site such

that the x axis points north ,nd the y axis points up along the local verticle.

Figure 3 illustrates a second coordinate system Xr 'rZ

Radar faces • radius

- from north

y =Tilt angle

Fig 3 Radar Centered Coordinate Systems

obtained from the first by a rotation -ý in azimuth and y in clevation. In

this system the xr axis is normal to the radar face pointing outwards and the

Yr and zr axes are in the plane of the face.

The simplified dynamic equations of motion in the x ryrZr coordinate
system are

SV.. ... r - ~x
xr Vxr l yr gz v yxryr--Vz g

Y = C K ()v vyr S v zr gx Vxr gz + 2 RU yr +g (129)

2 I
zr Vzr vxrg y" yr gx Zr g2ý

drag drift coriolis gravity
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and

-.= "04 0 (M)vs. (130)

where

2 r 2 2 .2 Z2

h0 +x•sin,+y cors.+( CosY + Yr sin y + )
2(Re + ho)"

Re Radius of the earth

go -9.80665 [1-.oce6 cos 2g] (Re/(Re + ho)) 2

9= go[sinY + 1xr(1 4- Yr .3 idc6s))/(Re h

= 1 Lcosy + (x 3 sinY coSY) .ir =,(. o 20) (Re, 4h 0

S z/(R + h).

The skew symmetric corioulis matrix is defined by the upper off-diagonal
terms

Uud = 0 sinO cosA cos~sinycosA - cosysitni

0 cos~cosYcosA + sin~sinFL

0
(131)

and the projetile velocity relative to the air is given by the vector (of
magnitude V):
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V =x - W (cos AZ cosy cosO + sinAZ cosy siný)

V = - W (-ccs AZ siz" cosO - sin AZ siriY sinU)

Vzr = Zr - WS(cos AZ siný - sin AZ cosO) (132)

where W is the magnitude of wind and AZ its azimuth direction (measureds

clockwise from north).

Atmospheric data are assturLed available in the look-up format (as a function
of h) prescribed for the BRL pointmass program. The universal aerodynamic
curves are described by piecewise fourth order polynomials of mach number*

I%(M) = Ei i

K(M =ZbM (13(13

VA(M) = E ;i M

4.4 State Variables. As indicated in the previous quarterly report, the un-
known aerodynamic parameters will be treated as additional state variables to
be identified by the estimation equations 122 and 123. included in the simpli-
fied dynamics (eq. 129) are tw'o such parameters C and S. The variable S is the
product of two unknowns, an assumed locally constant drift parameter r similar
to C and the projectile spin rate.

The state vector xt is defined by the expressions

X I = xr

X2= Yr

X3 = zr
*

See Appendix B for plots of KD(M) and K(M) as well as the coefficients a.

bi and c. -35-



4 r
X5 =jy

6 = '•r (134)

X7 =C

X8 = S

And from the equations of motion we obtain

x4
X4

x6X5

X6

x+ gz - vz g)+ 2)R(U2 5 + U1 3 x6 ) +

1v +÷ (vgx - vx gz)+ 2;.(u2 x4 + U23 X6) + gY

DV + 2(xvy- Vy g)+ 2%x U3 X4 3 U32 X5) + gz

0Lo
D3X8

where

D =-p X7 (M)V

D2m = - X8 ý(M)' (136)

D3 = - .00 4P 'A(M)V
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The components of the Ja'obian matrix F are given in Appendix E.

The x, yr' Z coordinate system was orginally selected because the phased

array radar measurements are defined directly in this system as is illustrated
in Fig. 4.

I

Fig 4 Observation Vector

In state variable notation these measurements (including optional doppler rate
information) are

2 2 2 1/2
IR ((x 2 + x 2 + x3 )

h(x) = = (X/R) (137)

Scos -l (x3 /R )

(xIX4 + x2 X5 + x 3 x 8 )/R

Again the Jacobian matrix HA components are given in Appendix E.

-37-
- - -



4.5 Covariance Terms. In radar tracking applications the Brownian motion
process pt in equation 1 is used to represent random atmospheric effects and
errors due to modelling approximations. Of the latter, the most significant
is the assumption that C and r are constant functions of mach number. This is
particularly true for the drift constant, however as illustrated in Fig 5 a
constant C is also not an especially good approximation for KDi(M)/KD(M) in
the region about mach 1.

Although it has been shown that a best Q matrix. for filter implementation
must be determined experimentally, order of magnitude estimates for Q sand

may be determined as follows. We assume that at any time t for particular

shell j C has been estimated such that

(138)C = %(M)/ýD(M).

Then at time t+At due to the change in mach number (and thus the true value
of the ratio of equation (138) there will be an error e introduced in C
given by the expression

d

= At it TM [K M)/i(M)j(1o
Vs

= tT (i~l)
Vs (M) ' j K Dj(M)- C6 'ý(M)J 11

Recalling the assumption

K(M) Z d~ N1  (142)
0D ,41

we obtain
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CJD =At- - • Ca. - DY). - (3.f3)
1,4

where we approximate

V = Ip K~ M (144)

Rather obviously the development for the drift coefficient will be very similar
to the above. By computing (for nominal p, Vý, and QE) error terms for drag
and drift as a function of mach number for the given standard shells and then
averaging the results; the following tentative g(x) 8x5 and Q'5X5 matrices were
determined

Soo16
.00116

.Q#oi .0016 (145)

Q54

2F 
0

0

0

g(x) 1 (146)
1

1

where

10" 1.14,< m M <.7

=4 4 12.31M) .7 < M < 1. 01

10 (2 9 ak 2g8.58) 1.0o1 < M • 1.14
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.=196 l.o < M M -; M .83

Q5= 5 °' 38 2 - l.666M) .83 <M m .96 (147)
-(OM - 7.2

10 .96 < m~r. lo

4.6 Implementation. The filter/smoother will be simulated using data gener-
ated by the programs described above in Section 2 of this report for a number
of nominal projectile trajectories. The past state to be estimated by fixed
point smoothing will be that which would correspond to X the first point of
the tracked portion of the trajectory. Experiments will be conducted as to
the viability of using algorithm generated covariance matrices for error evalua-
tion studies. Convergence properties of the algorithms relative to given Q
matrices and higher order expansions (p&rticularly h(x)) will be considered.
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I 1 .5

5.0 CONCIUSIONS AI PIANM FOR FUTURE WORK. As pointed out in Section 2 above,
a set of simplified-dynamics equation" has been obtained&ad programmed witl-
corrections for both drag and drift. Tentative numerical results obtained so
far indicate that these equations approximate rather well the effects of drift
keeping the resultant lateral errors quite small. The drag term, however leads
to longitudinal errors that are disappointingly large. This effect is most pro-
nounced for cases where the point at which backtracking begins occurs. after the
projectile's velocity has crossed the mach 1 region. This appears to indicate
that satisfactory results can only be obtained in sucA cases when it is possible
to obtain valid tracks of the target while it is still going at speeds greater
than mach 1. Work remaining to complete this effort must include a systematic
investigation of the lateral and longitudinal errors to be .expected in backtrack.;
ing for a comprehensive set of trajectories. Also, additional thought will be
applied to possible refinement of the drag correction so as to decrease the long-
itudinal errors to an acceptable value.

In Section 3 the formulation necessary to determine the magnitudes of irre-
ducible errors due to radar observation noise has been developed and the necessary
programming is underway. The purpose of this progrtm is to determine the theoreti-
cal accuracies attainable in launch-point estimatio,., on the assumptions that the
simplified-dynamics equations are correct. That is, ,it finds the minimal" errors)
using best possible filtering and smoothing without limits on the amount of qompu7.
trtion required, that result from the existence of the radar noise. These minimal
errors resulting from radar noise of course add to the errors introduced by use of
the simplified-dynamics equations. This will include a deternaination of whether
acceptable estimates can be made for the drift and drag parameters so as to permit
effective use of the simplified-dynamics equations for backtracking.

I I

The work in Section 4 constitutes a detailed formal procedure for performing
the filtering and smoothing required to estimate necessary inputs for backtracking
from a set of radar observations. Work has begun to create a computer program for
the realization and evaluation of this algorithm.
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= • Appendix A

Modified Point-Mass Equations

The equations here described are taken from Reference [1). The total
instaneous vector acceleration of the projectile's center of mass with re-
spect to the ground is

i = (drag term) + (drift term) + (Magnus term)

+ (gravity term) + (Coriolis term).

The drag term is

"-(pd/m'Ko + K (Qe21"v

o a

the drift term is

[ p2mKLv2 ~e

and the Magnus-effect term is

(Pd3/m)KFNQ(!e x v,)

where p is the air density,
d is the projectile diameter,
m is the projectile mass,

,1' , KL• , and K are functions of Mach number characteristic

of the projectile,

Q is the projectile yaw drag factor,
Z is the projectile lift factor,
N is the spin angular velocity,
v is the vector of projectile velocity with respect to air,

and ae is an approxim&ion for the angle of repose.

Auxilie-v equations are used for computing N and Qe



=(pd' /A)K Nv

where A is the projectile's axial moment of inertia and KA is a function of
Mach number.

.1|
•e (ab -adC x b) -v.¢ x •

where g is the gravity vector,

ca = AýLN/(pd3KL KM + •d5 . KT ,v)

ab= m~Y,/ (pdKM v 4 + pd3 K, Y,,,

and KM,' KT are functions of Mach number.

From data not given in Reference [3i but used in the programs that com-
pute the modified point-mass equations for the 105mm, 155mm, 175mm and 8
inch projectiles, KT = 0, giving at once the simplification

ae = -(AN/pd KV )(v xU)

and the drift acceleration term becomes

-(An/mdKMV 2 )KYL(v x u).

In 2.2, K1/K, is called K•(M) and AL/md is called ai.

Computation of the urag coefficients K and K(qa•) indicatethat for
ae : 20 the sum behaves to an order of magnitude as 'Y alone. Since simula-

'~Do
tions with the modified point mass model indicate that angles of> 2 occur onlyin the vicinity of apogee and then only for OEsa o800 mils., it is assumed that
the approximation

A drags (-P/C)C V

is always valid. Li44-_ __



Aýppendix B

Universal Aerodynamic Functions

This appendix includes coeffici.ents for and plots of the universal drag and
drift functions employed in the estimation algorithms. For comparison; graphs
of nonal K and drift a.K;(M) functions for the standard

projectile types employed in our analysis are also included. It can easily be
seen that the universal drift function tends to be a poorer approximation than
does the corresponding drag function.

The multiplying constants c. and r. determined with the universal curves areI 1

given along t-i!th their resjactive nominal ballistic coefficients c i and lift

factors J. in Table B.1. Computation of the appropriate c. and r. for any part-
" t e

icular trajectory (charge and q.E.) in the backtracking evaluation re~aired the
following scaling operations

C. =c. (C /Cit )
'true 1nom nom true

and

=r. (2. /2 )
'true 1 nom 1 true nom

where the ci true and 21 true are available from BRL data.

-- Table B.1

S Sheul Drag Nominal Drift Nominal
Diame-ýer '. Ballistic Coef. r. Lift Factor

105MM 1 .38650 1.919 .661707 .863

155 4 1.07657 2.331 lqj2855 •963

175 MNM .69032. 3.101 .741lOi3 1.009

8 IN .84459 3.16 1.4668419 .880

The coefficients for aJ1 three aerodynamic fu'nct0ons also given in this appen-
dix as Table B.2 are for piecewise fourth order polynomials (of Mach number) fits
to the respective curves. The particular coefficients are assumed valid between
the previous break poirt mach number up to ar,& .nclihdlng the value given in column
six of the particular row of coefficient values. All values are given in the same
format as is employed in the "aeropacks" of the BEL point mass prog7ran.

List o2' 1ieures

Fig B.1 Universal Drag Curves
Fig B#2 Zero-Yaw Drag Curves
Fig B.3 Universal Drft Curve
Fig B.4 Zero-Yaw Drift Curves
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Appeadix C

Computer Program Development

The starting point for this work was a FORTRAN program -o compute modified-

point-mass trajectories, produced at Ballistics Research Laboratory and furn-
ished to Project RATAN by USAECOM. In adapting this program to the Spectra-70
Computer at the Moore School several minor bugs were eliminated and several
features were added to obtain desired results. A description of the main pro-
grams in use is as follows.

F-i. PTMASS - a module composed of 9 subroutinet which computes the trajectory
of a shell and the corresponding radar coordinates in either phased-array
or range-azimuth-elevation form. This module includes the following sub-
routines:

A. PTMASS - the main calling program which calls all of the others and which
reads in and stores the variable data - corresponding to a particular tra-
jectory. This input data includes the necessary variables for computation
of the radar coordinates.

B. AEROBL - a subroutine called by PTMASS which reads the aeroballistic data
for a particular shell from a disk file, checks the data for errors, and
stores it for later use in computation of the aerodynamic coefficients KDA,
KDO, KLO, KM, KFI, KA, and KIA.

C. TRAJ - a subroutine called by ?ITASS which computes the velocity and posi-
tion vectors of the trajectory at specific points in time, using a'single-
step predictor-corrector type of numerical integration, and which also
computes the corresponding radar coordinates. It is possible to obtain
either phased-array or range-azimuth-elevation radar coordinates by vary-
ing an input variable. This subroutine will compute the trajectory until
one of the various "stop conditions" is satisfied. These stop conditions
include termination of computation when time, the x-coordinate of the
position vector, the range, the height of the up-leg, or the height of
the down-leg have reached a given value, or at the summit of the trajec-
tory. Other values printed out at each time interval include mach number,
drag, lift, and magnus force.

D. COMPC - a subroutine called by PTMASS before TRAJ is called to compute the
trajectory. COMBO computes the ballistic coefficient c as a function of
the quadrant elevation.

E. COMET - a subroutine called by PTMASS and TRAJ which computes the time of
flight correction as a function of machine time.

F. COMPFS - a subroutine called by PTMASS which computes the fuze setting.

G. COMPL - a subroutine called by PTMASS before the trajectory is computed
which computes the lift factor as a function of the quadrant elevation.

-51-
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H. COMP__NF - a subroutine called by PTMASS which computes the muzzle velocity
correction factor N if the standard weight of the projectile is different
from the actual weight.

I. COOPT - a subroutine called by PTMASS which computes an adjustment to
the initial velocity if propellant temperature is not 700.

F-2. BACK.PTIASS - a module of 10 subroutines which computes the trajectory of
a shell and has the option of stopping at any point in time and integrat-
ing backwards until height is zero using the simplified dynamics equations
for drag and drift. This module includes many of the same routines as
PTMASS - those that are different are explained in further detail below.

A. AGAIN - the main executive which calls all the others. AGAIN is 'similar
to the routine PTMASS except that it does not have an insert allowing it
to read radar data. It also differs from PTASS in that it has a patch
which calls AEROBL to read in the universal aeroballistic pack for use
in backward integration.

B. AEROBL - same as before

C. AGAIN.TRAJ - a subroutine called by PTMASS to compute the trajectory. This
routine is similar to TRAJ except that it does not compute corresponding
radar coordinates at each point of the trajectory.

D. BTRAJ - a subroutine called by PI1MASS which computes the trajectory back-
wards until height is zero using the simplified dynamics equations for
drag and drift.

E. COMPC - same as before

F. COMPT - sa-me as before

G. COMPFS - same as before

11. COMPL - same as before

I. COMPNF - same as before

J. COMPPT - same as before

F-3. AGAIN.PTMASS - a module of 10 subroutines which computes the trajectory
of a shell until one of the various stop conditions is satisfied. This
program has the option of stopping at any point in time and integrating
backwards until height is zero using the standard BRL equations for drag,
drift, and magnus force. This capability was designed into the module as
a check on the backward computations of BACK.PTMASS with the simplified
dynamics equations.



A. AGAIN- same as before

B. AEROBL - same as before

C. AGAIN.TRAJ - same as before

D. AGAIN.BTRAJ - a subroutine called by PTIMSS .which computes the trajectory
"Mackwards until height is zero using the standard cquatlons for drag, drift,
and magnus force.

E. CO01TC - same as before

F. COMIP - same as before

G. CO0XFS - same as before

H. COMPL - same as before

I. COPPNFF - same as before

J. COMPPT - same as before

F-4. Considerations in implementing simplified drag and drift:

As originally designed, the program module AGAN.?PTMASS had the capability
I of stopping computation of a trajectory at any point in time [using a stop code

of 4) and of integrating backwards until height was zero [using a stop code of
9]. It woluld have been easy to run the program with a stop code of 4 to some
point in time and then re-run the program using the final values of the velocity
and position vectors from the previous run as input to compute backwards with a

I" stop code of 9. This approach, however, would have been wasteful of computer
time and slower, as the entire program would have to be reloaded to compute back-
wards, and the input v-ýlues for the second half of the run would have had to be
written to a disk file, or punched into cards. Instead the module was modified

•I so that upon reading a certain input card, the program automatically switches to
Sa subroutine which integrates backwards using the simplifiec dynamics equations,

taking the last values of the trajectory as a starting point.

The procedure is initiated by reading an A card in the input data. This
signals the program to read in the universal aeroballistic pack for that
particular shell type. Then the subroutine BTRAJ is called to perform the
backward integration. The patch made to the program is showm below in lines
62o-633.
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GOTO 110
C PROCEDURE FOR AN A CARD
C STORE NEW AEROBALLISTIC DATA

112 IDSET=B(1)
C TEST READ NEW AEROPACK OR NOT

IF(IDSET.EQ.32) GO TO 700
CALL AEROBL(IDSET)

" C PRINT HEADINGS
700 IF(TEST.EQ.0) GO TO 701

WRITE(6,4O6)
GO TO 702

_701 WRITE(6,4O5)
702 WRITE(6,450)

C COMPUTE THE BACKWARD TRAJECTORY WITH SIMPLIFIED-EQUAT
CALL BTRAJ(1,METRO)
GO TO (43,113),IER

113 G0TO(95,109,lO8),IERR

The subroutine BTRAJ was created from the rout TRAJ which computes
trajectories under a variety of stop conditionL A patch was made just after
the entry point to the routine which sets all the necessary variables to en-
able backward integration to take place (stop code = 9). It was necessary to
remove all statements which initialize the values of time, position, and
acceleration for the final values from the forward run were to be used. Since
these variables were all placed in the COMMON area of storage, the final values
were automatically passed in when the subroutine was entered. The patch thatwas added to set the variables is sh;vn below in lines 44-52 of the listing:

DATA TOL/.IOI/
METR=METRO
GOTO(10002),JTR

C . .FIRST CALL PROCEDURE
C SET TIME TO FINAL VALUE FROM FORWARD RUN

1000 TI=T
C SET STOP CODE TO 9

ISTOP=9
C SET PRINT INTERVAL TO -1.0

"PINT=-I.
C SET FINAL VALUE TO ZERO

FV0.
RECW=2.204622622/WT

Other changes made to the progTam to implement simplified drag and drift
include a section to set up the constants used in the actual computation of
drag and drift, as explained in another section of this report, and replace-
ment of the equations to compute the f.rces of drag, drift, and magnus force
with the new equations as shown below:

ALPHA=ScRT(ALPHS)
C FIND COMPONENTS OF UDOT--THE ACCELERATION
C DI IS DRAG
C 02 IS DRIFT
C DI IS MAGNUSFORCE

710 D1=-RHO*V*KDO*DDD
D2 = NR*KLO/VSQ
D3=0o
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Appendix Di

Coordinate Conversions

Project RATRAM= has been using a computer program written by BRL, for generat-
ing projectile trajectories by means off the modified !oint-mass equations. In
order to prepare for simulating the signal-processing filters to be designed,
there have been added instructions to the BRL program that compute the center-of-
mass projectile coordinates in radar axes, concurrently with the computations by
the original program of the position in gun-axes. This appendix describes the
radar-axes computations.

The gun-axes in the original program are a right-handed rectilinear skstem
with origin at the gun, the y-axis positive upward along the local vertical, a.d
the initial velocity vector in the x-j plane. The radar coordinatbs of the center
of mass of the projectile are computed by rigid translations, and rotations of. co-
ordinate systems until the projectile positic-' is expiessed in a right-handed :
rectilinear system with the origin at the radar, the y-axis positive upward along
the local vertical, and the x-axis horizontal along the nominal zero-azimuth line
of the radar. Then the rectilinear coordinates are transformed t8 range-a-0 radar
coordinates and also to "range-azimuth-elevation. The earth is assumed to be a
sphere of radius R. The radar elevation is not assumed to 'be the same as the gun
elevation.

Three input constants,, x. yg, and A2, define the gun-axis system with'respect
to the radar coordinates. These three constants are most easily explained on the
basis of a flat earth. A2 is measured clockwise looking down, from a line through f
the gun parallel to the radar x-axis, as shown in figure D-1. The position of the
gun in the radar rectilinear coordinate system is at z_ = x ) x = y. (The choice

of the symbols Xg, y here and in the program annotations Is inconsistent with the
choice of axes, for historical reasons arising in the fact that information from
BRL, including computer programs, uses a vertical y-axis and information from ECOM,
in particular the gun location, uses a horizontal y-axis.)

The first coordinate transformation is a rigid rotation about the vertical, to,
make the gun x-y plane pass through the radar. The equations are

2 2 1/2"

g g

Cl= (-x sin A2 - ygcos A2)/d

Sl- (xcos A2 -ysin A2)/d

4-
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I

x =x Cl -z S1
- 1 0 0

z] =x Sl + z C11 .0 0-

where :r. y ,*z are the coordinates of the projectile center of' mass as produced
0 00 "

bh the origifial BRL computer program.

Next there is a rigid rotation about the center of the earth, to make the y-
axis pass through the radar; ,the..origin is also moved upwhrd a distance h, the
height of the radar above the elevation of the gun. The equations are

! .2

0 d/R,I ,
2 I

2x 2  Xl(-e2/2)- ye d

C3 -y /d

S3 =-x d.I !

53

S= x2 c3 - z S3

Sz 3 =x 2 S3 +z 1 l

Y= xe + Y'(1 "e 2 /2) - ed/2 -h,

where h is the height of the radar above the alt~itude of the gun. The coordinates
of the cernter pf mass of the projectile ip the rectilinear radar-axe's system are

ix 3 , y 3 , z3. The reason for hot explicitlr performing the rotation through 0 in the

usual manner is to avoid the round-off error of subtracting nearly-equal quantities

of.the order of R, the radius of Phe earth.
I P II.

Concurrently with the computation of x3 , y3, z3 : there are 6omputed their time

,derivatives, using the time derivativex x, y, and z pr~oduced by the original
0 0 0

2 I

I I



BRL Drcogram:

C1 S' x.= x Cl - £ Si
2. o o

1 0 0

Xt= kl - 82/2) - 0 e

k 3 = c 23 s

z3 = x 2 S3 + ic3

The radar range

r = 2 + 2+ 2 /2x÷3 +z3)

and the range rate

r= (x3 x3 + Y3 k3 + z3 z3 )/r

are computed.

The phases-array radar angles are computed by

a = arc cos(x 3 /r)

= arc cos(z 3/r)

The azimuth and elevation angles are

AZ = arc tan(z 3 /x 3 )

EL = arc sin(y3 /r)

li' -.7-
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x3 x[9

Radar}

Position of Gun in Rectilinear

Radar Axes

(Note: the gun coordinates are called (x,yg) as shown above; in the program

described in Appendix D. They are called (z ,x in section 2.)

Figure D-1
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Appendix E

Components of Jacobian Matrices

A. F Matrix

1.FJ.j = afi/6X
• ~/k

/ 0 o 0 1 0 0 0 0o

,0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

F-- : F4F1  F42  0 F4 F45 F46 F47 F48

F1 5 o 54 55 '56  F57  F58

F61 F62  F63  F64  F65  F6 F67  F(.g8

0 0 0 0 0 0 0 0

F81  F82  0 F84  F85  F86  •87  F88

~3D 26 .
F4 ! = + (v gz" V g ) - Jsiny

F41 ý- y z z x 2h~

F42  + [ Vx ;7(V8z- vz1) •jcoY

rv bh 3D2 (V g V g -x + 259 + D2.F45 L-59-;- zy1



dD X.D

F46 -_v TV'0(g zvj7 1 3 -D 2 gy

F47  1 Vx/X7

"41 8 =D 2 (Vygz -zy)

F5 1 L- y - _ - siny

*F, 2 =[V~ - + -v vs) ;hjco~sy

6D h D
F% =V 1 TV 2 7zg xz + 20JU 2 1 D2 gz

6 D 1 b

F55 DlL y *V +UVVzgx zA

[Vy 6D1 + b (6og

F5 (1g)W ý-+2U3 Dg



F5 =DlV/X..

(6-V 9, (V~ 9, g)

F52 8 Dr- z x 21

F ~ 1 Vg - vyg) 2.-jcSiy

*F 62 :l~ -Xh + g yz T'"c

F6

F6 8 6,5 )D2(~~
- - - - -- - - - - - - - - - - - - - - - - - - - - - - - - -



F8 1 =X ~siny

F 2 X~jcosy

F82 X(8 Th

F84( 8  v

where

6 D1  O h ~ ii,6

D2 X8 b Mi +i-6S

- D3 kjjý + .OO0.p(h), ic[h 3-_________Z4_ -6J-
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=- -p(h) x7 L0 C(i+.) a.i j

•2 X8,
;T- Lo , (i-2)b M]

-004 p (h) 0X:(i+i) ]

-(h) 8.66473 x 1O5 - 4.60557 x 10'9h + 1.26345 x 1015h2

7hV 3. 84 x lo" h 1 Ii, 000

0 h> -1, 000

Assume U.S. Standard Atmosphere

B. H Matrix

Hi 6 hi/6Xj

HH 0

H21 H22 H23 0 0 0 0

H 0 0 0 0 0 N
H31  '32 H33  0 0 0 0 0

H41  H2 H43  H44 -"45  H46 0 0/
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11. = X1/R

H12= X2 /R

H13 = X3 /R

IX- T2 + 2

21 x12 X3

xxX1 X2

R2 /ý2 + X22

+ X 3 X

X x2

3= Jx1 + ••

1 X-2/-
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H42= tX R - X R/R2

H43 = tX6 R R XHs/1

H X1/R

H45 = X2 /R

H4 X3 /R
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Appendix, F
Ail

Glossary of Symbols

Projectile Yaw angle of repose

ap Radar angle measurements

AZ Wind azimuth angle

C Unknown drag parameter

d Projectile diameter

D1 -P C K(M)V

2 - s D(M)/V

D3 - .004 P KA (M)V

f(xt,t) State variable equations of motion

F- Jacobian matrix ýf(x)/6x

go Sea level acceleration of t.Xavity

gx~gy.,gz Gravity vector components

g(xt) Matrix function

Y Radar tilt angle

h Target altitude

h Radar site altitude
0

h(x,) Radar measurement vector

H Jacobian matrix •h(x)/6x

K (M) Drift function

KDi(M) Digtfunction Projectile i

K A(M) Spin function
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_K(M), 17 (M), KA(M) Universal functions

GZ"I Projectile lift factor

m Projectile mass

1M Mach no.= V/Vs

Laditude of radar

N Projectile spin

(DR Earth rotational rate

Radar pointing angle (clockwise from north)

I + At F

Q State noise covariance matrix

r Unknown drift parameter

P Density of air

Re Radius of earth

R Target range

Range rate

S NXr

U Coriolis matrix
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"V projectile velocity (W.R.T. air)

*1Wir Vyr , Vzr Projectile velocity vector components

TVs Speed of sound

Xg yg;Zg Ground located Cartesian coordinate system

Kr' Yr' Zr Radar located Cartesian coordinate system

State vector

Estimated state vector

Radar measurement vector
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